Malaria is a type of infectious disease that mostly occurs in tropical and subtropical regions, it remains a problem in Indonesia and the world (World Health Organization, 2015; Crompton et al., 2014; White et al., 2014). Antimalarial drugs resistance is a challenge for the elimination of malaria (Talisuna et al., 2004). Indonesia has 64 species of Garcinia and 25 species in Kalimantan (Uji, 2007). G. parvifolia Miq. is a tropical plant that can be found wildly in peat forests, primary and secondary forests and submontana forests (Merza et al., 2004). It also as known as *Garcinia dioica* Blume and *Garcinia globulosa* Ridley. The common name for it is cherry mangosteen, kandis and yellow kandis. *G. parvifolia* Miq. in Indonesia has a local name as “asam kandis” (Lim, 2012). This study used *G. parvifolia* Miq, because it is well known to be a rich source of bioactive prenylated xanthones and triterpenes. Both of them are reported have an antimalarial activity.

METHOD

- **Extraction**
 - Ultrasound assisted extraction
 - n-hexane
 - Dichloromethane

- **Fractination**
 - Dichloromethane extract (BP12-S-D)
 - Ultrasound assisted extraction
 - Dichloromethane
 - Residue
 - Methanol extract
 - Residue

All extracts were tested antimalarial activity by LDH assay.

RESULT

- All extracts inhibit *P. falciparum* growth by LDH assay
- The strongest inhibition was showed by dichloromethane stem extract (BP12-S-D) with the IC₅₀ value of 6.61 µg/ml
- Fractionation of BP12-S-D was obtained 10 fractions and all fractions were identified using TLC
- Fraction-1 (F1) performed the strongest inhibition of the parasite growth with IC₅₀ value of 6.00 µg/mL
- F1 was identified using HPLC and 2 major peaks were observed (A and B)

CONCLUSION

In this study 10 fractions were separated from *G. parvifolia* Miq. stem extract. The fraction-1 (F1) of dichloromethane extract of *G. parvifolia* Miq. stem was the strongest antimalarial activity in LDH assay. F1 showed active antimalarial activity with the IC₅₀ value of 6.00 µg/mL against *P. falciparum* 3D7. It might be a potential candidate for the new antimalarial drug.

ACKNOWLEDGEMENT

The authors wish to acknowledge to Natural Product Medicine Research and Development (NPMRD) and Institute of Tropical Disease (ITD), Universitas Airlangga for supporting this research.